


when certain specified subsets of the components fail and the

objective of a simulation might be to estimate some character-

istic of the time to failure of the whole system. In this case,
E = {the system fails}.

A steady-state simulation is one for which the quantity of

1

interest is defined as a 1imit as the length of the simulation goes
to infinity. Since there is no natural event to terminate the simu-
lation, the length of the simulation is made large enough to get a
"good" estimate of the quantity of interest. Alternatively, the
length of the simulation could be determined by cost considerations.
The following are some examples of steady-state simulations:
a) Consider a computer manufacturer who constructs a simulation
model of a proposed computer system. Rather than use data
from the arrival process of an existing computer system as input
to the model, he typically assumes that jobs arrive in accord-
ance with a Poisson process with rate equal to the predicted
arrival rate of jobs during Lhe period of peak loading. He
is interested in estimating the response time of a job after
the system has been running long enough so that initial condi-
tions (e.g., the number of jobs in the system at time 0) no
longer have any effect. (Assuming that the arrival rate is
constant over time allows steady-state measures to exist.) 1
b) A chemical manufacturer constructs a simulation model of a pro-

posed chemical process operation. The process, when in




steady-state case. This may be a carry-over from mathematical

queueing theory where only a steady-state analysis .. generally

possible. However, we have discovered by talking to a large number

of simulation practitioners that a significant proportion of simula-

tions in the real world are actually of the terminating type. The

following are some reasons why a steady-state analysis may not be
appropriate:

a) The system under consideration is physically terminating. In
this case, letting the length of a simulation be arbitrarily
large makes no sense.

The input distributions for the system change over time. In
this case, steady-state measures of performance will probably
not exist.

One is often interested in studying the transient behavior of

a system even 1f steady-state measures of performance exist.

4. Stopping Rules for Terminating Simulations

In the following three subsections we consider procedures
which can be used to construct confidence intervals (c.i.'s) for
measures of performance for terminating simulations. We will not
consider the steady-state case since it has been widely discussed
in the simulation literature. For surveys of fixed sample size and
sequential procedures which can be used to construct c.i.'s for
steady-state measures of performance, see Law [9] and Law and
Kelton [10], respectively. The random numbers used in the remainder

of this paper were generated from the generator discussed in [8].
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A. Fixed Sample Size Procedures

Suppose we make »n independent replications of a terminating
simulation. The independence among renlications is accomplished
by using different random numbers for each replication and by
starting each one with the same initial conditions. If Xi is the
estimator of interest from the ith replication (£=1,2,...,1), then
the Xs's are independent identically distributed (i.i.d.) r.v.'s.

m

(For the M/M/1 queue, Y. might be the average I D1./m or the pro-
” . ‘v._—_] v
portion ¥ Y.(x)/m.) If, in addition, the X.'s are normally dis-
gl 3

tributed, then a 100(1-a)% (O0<a<1) c.i. for u = E(X) is given by

X(n) + t':-],l-\x/Z"q. n)/n , (1)

where Y(») and «?(») are the usual sample mean and variance, re-

spectively, and ¢ » 1s the 1 - a/2 point for a ¢ distribu-

n=-1,1-a
tion with »-1 degrees of freedom.

In practice the Y.'s will not be normally distributed and the
c.i. given by (1) will be only approximate. To investigate the

effect of nonnormality, we simulated the three stochastic models

of Section 2. For the M/M/1 queue with p = .9, the (¢,5) inven-

|
|
|
|

tory system, and the reliability model, respectively, the quantities

of interest were J(25|¥(0)=0) = 2.12, c(]2|[1=s) = 99,52, and
E(rlall components are new) = .778. (See [8] for a discussion

of how to compute the first two quantities.) For each modei we
performed 500 independent simulation experiments, for each experi-

ment we considered » = 5, 10, 20, 40, and for each »n we used (1)




to construct a 90% c.i. for the desired quantity. In Tables 1,2,
and 3 we give the proportion, 5, of the 500 c.i.'s which covered the
desired quantity, a 90% c.i. for the true coverage, and the average
value of the c.i. half length divided by the point estimate over

the 500 experiments for the three models. The 90% c.i. for the

true coverage was computed from

B+ 1.645/5(1-5)/500 .

Observe that for the M/M/1 queue and the (s,S) inventory system the
coverages are quite close to 90%, but for the reliability model
there is a significant degradation in coverage, apparently caused
by a severe departure from normality. To see if this is indeed

the case, we generated 1000 Xi's for each stochastic model and
estimated the skewness and kurtosis. These estimates, which are
presented in Table 4, indicate that the Xi's for the reliability
model are considerably more nonnormal than are those for the other
two models. This conclusion was reinforced by plotting histograms

for the three sets of data.

B. Relative Width Procedures
One disadvantage of the fixed sample size approach to construct-

ing a c.i. is that the simulator has no control over the c.i. half

length; for fixed n, the half length will depend on the population
variance o? = Var(x). In this subsection we consider two sequential

procedures which allow one to specify the "relative precision" of l




<A =

a c.i. Both assume that X,,X,,... is a sequence of i.i.d. r.v.'s
which need not be normal.

The first procedure has been suggested for use in several
different contexts; see Iglehart [5], Lavenberg and Sauer [7], and
Thomas [13]. The objective of the procedure is to construct a
100(1-a)% c.i. for u such that the difference between the point

estimator X(n) and u is no more than 100 y% of X(n), that is,
|X(n)-u| € v |X(n)] for O<y<1 . (2)
Choose an initial sample size ny 2 2, let

§, q(n.a) = tn_]']_a/2J85(n§7n '

r,

and let

5. yin,u)
o ] b
N},’](Y‘G) » m\n{n: n 2 nge at(n) > 0, —:TY(;)-T_ < Y} . ¢
(Note that & ;(v,a), which is the required number of replications,

is a r.v.) Then use

Ir,](Yta) 5 ['?(NY,’](Yva))‘dr.](NY,.](Ypa)’a)vR(NP‘](Y-a))+6r'](Nr'](Y'a)-a)] (4)

as an approximate 100 (1-a)¥ c.i. for u. It easily follows from
(3) and (4) that Ii’](y.a) satisfies the criterion given by (2).
Furthermore, using an argument similar to the one employed by
Lavenberg and Sauer in the context of the regenerative method for
steady-state simulations, we have been able to prove the tollowing

theorem.
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Theorem 1. If ;; # 0 and 0 < o* < », then Tim P{p€7 _(y,a)}
Y..0-0- r,]
=1 - Q.
The objective of the second procedure, which is due to Nadas

[11], is to construct a c.i. such that

|X(n)=u] € ¥ |u] for 0 <y <1 . (5)
Let ¢
vi(n) = ‘] + 2[.\‘{.-&(»:)]’1 mo= (I/m) + (n=1)8*(n)/n
1 =1 |
Gr,‘.'("'“) = tn-],]-a/Z"””"”" 3
and
| S, z(n,a) l
Nr’z(y,a) = minlnzn 3 1o, —TW g YS
Then use

(6)

[i(wr »(v.a)) K(Nr,,(y.a))]

IP,Z(Y.Q) - _‘i‘+ Y , ‘l -y

as an approximate 100(1-a)% c.i. for u. From (6) it is easy to
show that 7 2(y.a) satisfies the criterion given by (5). Further-

more, the following theorem was proved by Nadas.

Theorem 2. If yu # 0 and 0 < 0” < », then lim, P{u CZIr'z(y.a)}
=] - a.

In order to compare the two procedures and to determine the
effect of non-infinitesimal y on coverage, we once again simulated
the three stochastic models. For each model we performed 500 inde-

pendent experiments, for the M/M/1 queue and the reliability model
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we considered y = .2, .1, .05 for each experiment, and for the in-
ventory system we considered y = .2, .1, .05, .025, .0125, .00625
for each experiment. In all cases, ny = 5. In Tables 5, 6 and 7

we give point estimates and 90% c.i.'s for the true coverages, point
estimates and 90% c.i.'s for E{Nr,i(y.u)}(i=l.2). and the average
c.i. half lengths over the 500 experiments. We considered more
values of y for the inventory system because it appeared from our
empirical results that a smaller y is required for the coverage ul-
timately to converge to the desired level. (A smaller Yy is required
for this model to get a large value of Nr'f(y.a).) Note also that
convergence of coverage does not appear to be monotone.

We repeated the above 500 experiments using the same random
numbers and ngy = 2. For procedure 2 the results were identical;
however, for procedure 1 there was a significant degradation in
coverage due to premature stopping on replications 2,3, or 4, For

example, the coverage for the M/M/1 queue with y = .2 was .798.

c. Absolute Width Procedures
In this subsection we present two procedures which allow one

to construct a 100(1-a)% c.i. for u such that
|X(n)-u| € ¢ , (7)

where ¢ is a specified positive number.
The first procedure, which is due to Chow and Robbins [1], as-

sumes that X]'X2'°" is a sequence of i.i.d. r.v.'s. Choose g 3 A

S B 5, i, N A R g
’

% L™
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Let v?(n) be defined as in Subsection 4.B, let

N (e,a) = min{n'n 2 n., vi(n) € o*n }
» i . ’ 2 s
a,l 0 (tn_] ,]-0/2)

and then use
Ia’](c,a) = [X(NaJ(c,a)) - c,)?(Na’](c,a)) + c]

as an approximate 100(1-a)% c.i. for u. It is clear that  § ](a,a)
satisfies the criterion given by (7). The following theorem was
proved by Chow and Robbins.
Theorem 3. If 0 < 0% < o, then lim P{u € I ](c,a) =1 - a.
0t s

For an empirical evaluation of the above procedure under the assump-
tion that the Xi's are normal, see Starr [12].

The second procedure, which is due to Dudewicz [2], assumes
that the Xi's are i.i.d. normal r.v.'s. Initially make no(nO;Z)

replications of the simulation and compute X(no) and 32("0)‘ Let

Na,Z(C’a) = max{n0+1,[wzsz(n0)1} .

where w = —ay2/¢ and [z] is the smallest integer > z. Make

t
no-],l
Na 2(c,a) - g additional replications of the simulation, let

N ,(e,a)
?(Na,z(c,a)-no) . ._ié X;/(Nh’z(c,a)-no),
L-n0+]

and let i(Na’z(c,a)) = ayk(n,) + aZ?(Na’z(c.a)-no), where

2 "0 Na'z(c,a) Na,z(c,a) - nd)
s B Na ztc,a$ L - "y <] 3 w’s2(n0)
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and ap =1 - ay - Then use

1, plesa) = LW, ple,a))-c, R 5(o,a))se]

as an approximate 100(1-a)% c.i. for u. Dudewicz has proved the

following theorem.

Theorem 4. P{u cgla 2(u,a)} =1 -a for all ¢ > 0.

To compare the sequential procedure of Chow and Robbins and
the two-stage procedure of Dudewicz, we performed 500 independent
experiments for each model. To make the absolute width results
somewhat comparable to the relative width results, we chose the
values of ~ to correspond to the values of y; that is, for each y
we chose ¢ = yu. For the Chow and Robbins procedure we chose
ny = 5 and for the Dudewicz procedure we considered ny = 15, 30, and
60. (Dudewicz [3] recommended that ny be at least 12.) The re-
sults of the simulation experiments for the three models are given

in Tables 8, 9,and i0.

5. Summary and Conclusions
We have defined terminating and steady-state simulations and
have discussed some common measures of performance for each type.
In addition, we have concluded from talking with simulation practi-
tioners that a significant proportion of real-world simulations are

of the terminating type. This is fortunate because it means that

classical statistical analysis for i.i.d. observations (e.g., con-

fidence intervals, hypothesis testing, ranking and selection, etc.) ;




is applicable to analyzing many simulations. On the other hand,

in the steady-state case there is still not a totally acceptable
procedure even for the relatively simple problem of constructing
a c.i. for a steady-state expected average.

We have also considered procedures for constructing c.i.'s
for terminating simulations. If one is performing an exploratory
experiment where precision of the c.i. may not be overwhelmingly
important, then we recommend using a fixed sample size procedure.
However, if the Xi's are highly nonnormal and if the number of rep-
lications n is too small, then the actual coverage of the con-
structed c.i. may be considerably lower than that desired (see
Table 3).

If one wants a c.i. having half length that is small relative
to the point estimate, then a relative width procedure may be used.
We recommend using Procedure 2 (due to Nadas) with ng 3 5. Proce-
dure 2 appears to give slightly better coverage, its criterion (see
(5)) is more intuitive than the criterion of Procedure 1 (see (2)),
and Procedure 2 does not seem subject to premature stopping even
for ny = 2. (On the other hand, Procedure 1 uses a more intuitive
expression to construct a c.i.)

If one wants a c.i. for which the half length is a specified
number, then an absolute width procedure may be used. We recommend

using the Chow and Robbins procedure with ny 3 5. Their procedure

generally requires a smaller average sample size, the variance of




.

the sample size is smaller, and its coverage seems to be less af-
fected by departures from normality (see Table 10).

In general, we believe that relative width procedures are more
useful than absolute width procedures due to the difficulty in
specifying the absolute width ¢ for most simulation experiments.
When using either the Nadas procedure or the Chow and Robbins pro-
cedure, we believe that it is advisable to choose a Yy or ¢ which
will cause the procedure to run until the sample is at least of mod-
erate size; perhaps, at least 30. (Since both procedures are based
on the central limit theorem, it is unreasonable to think that they
will work well in general for a small sample size; see the results
for y = .025 in Table 6.) Finally, we mention that precise c.i.'s
may be unaffordable in the real world due to the high cost of mak-

ing a single replication.
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Table 1.

Table 2.

Table 3.

Fixed Sample Size Results for d(25|¥(0)=0) = 2.12, M/M/1 lé

Queue with p = .9.

n coverage average of c.i. h;}:)length
5| .880 * .024 .672

10 | .864 + .025 .436

20 | .886 * .023 .301

40 | .914 £ .021 .212

Fixed Sample Size Results for e(IZII]=S) = 99,52, (s,S)
Inventory System.

n coverage average of c.i. h;}:)length
51 .908 + .021 .048
10 | .904 + .022 .031
20 | .880 = .024 .021
40 | .894 + .023 .014

Fixed Sample Size Results for E(T|all components new)
.778, Reliability Model. :

i. half length

average of e

n coverage YT
5 | «/U8 £ 033 1.163
10 | .750 + .032 .820
20 | .800 + .029 .600
40 | .840 = .027 .444




Table 4. Skewness and Kurtosis for the Three :
Stochastic Models and the Normal Distribution.

S;:c8$:€i§b:2?§; Skewness | Kurtosis
 Worms1 Distribution | 0* 3
M/M/1 Queue 1.66 6.43
(2,8) Inventory System .45 3.76
Reliability Model 5.18 54.39

*Theoretical Values
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Table 5.

e

Queue with p = .9.

Relative Width Results for 4(25(¥(0)=0) = 2.12, M/M/1

Procedure 1 Procedure 2
average c.i.|,, average c.i.
Yy (E{¥ ,‘(Y.a)} coverage | yf jength E{NP’Z(Y.Q)} coverage | i¢ length
.2 | 42.3+0.9 .842+.027 .414 41.9+0.8 .862+.025 .437
<8 V15 2%) .7 .860+.026 211 174.5+1 .7 .868+.025 213
.05/704.4:3.5 .884+.024 .106 703.723.5 .882+.024 .106
Table 6. Relative Width Results for a(]2|I1=S) = 99,52, (s,5) Inventory
System.
Procedure 1 Procedure 2
average c.i.|,, average c.1.
Y E{er](y,a)} coverage |, .1¢ Jength E{Nr,Z(Y'a)} coverage || 1¢ Jength
e 5.0%0.0 .902+.022 4.89 5.0+0.0 1.0 20.74
= 5.0+0.0 .902+.022 4.86 5.0+0.0 1.0 10.06
.05 5.9+0.1 .892+.023 3.97 5.720.1 .962+.014 4.99
.025 13.3+0.4 .834+.027 2.35 12.3+0.4 .858+.02¢C 2.48
.0125 | 51.0£1.0 .856+.026 1.23 49.8+1.0 .862+.025 1.24
.00625|206.3+1.8 .872+.025 0.62 205.4+1.8 .876+.024 0.62
Table 7. Relative Width Results for £(7|all components new) = .778,
Reliability Model.
Procedure 1 Procedure 2
- average c.1. average c.1.
Y u{Np,](Y.G)} coverage |p.1¢ jength E{“332(Y’“)} coverage |yo1e jength
.2 | 213.7+4.5 |.876%.024 <158 214.1+4.5 |.908%.021 .160
.1 | 907.4+11.2 |.898+.022 .077 908.6+10.8 |.902+.022 .078
.0513720.5+23.7 |.882+.024 .039 3720.0+23.7 |.884:.024 .039




Table 8. Absolute Width Results for J(25|n5(0)=0) = 2.12, M/M/1
Queue with p = .9.

Chow and Robbins Dudewicz
E{Na ]1c,a)} coverage [n, H(Wv é(v,d)} coverage
2 . 2

15 49.9+2.1 | .850.026
.425 | 38.0¢1.2 |.800%.029/30| 48.2¢1.3 |.912¢.020
60/ 62.1+0.4 | .926¢.019
T51796.9+8.5 | .854+.026
.212 [173.5:2.5  |.898+.022/30)185.7¢5.6 | .888+.023
60/182.9:4.0  |.894+.023

G
-

51786.1+34.2 | .868%.025]
.106 {706.8t4.8 |.906+.021/30(741.1+22.6 |.878+.024
60/730.2+15.7 |.898+.022

Table 9. Absolute Width Results for L(I2II =5) = 99.52, (s,5)
Inventory System.

g

| —Chow é"a'R65b1n§-__ﬁ _ Dudewicz r
e E(ﬁ;“ {e,a) Y Tcoverage L.]-{.‘ 2(’:&77 coverage
T15]1716.0%0.0 .936+.018
19.90| 5.0%0.0 1.0 30| 31.0:0.0 |.878+.024
R, S50 60/ 61.0%0.0 |.888,023
151716.0%0.0  1.936%.018
9.95! 5.0+0.0 1.0 30| 31.0%0.0 |.880%.024
L__,.L_ | i60] 61.0%0.0 }.890*.023
| 57 16.0%0.0 .922+.020
4.98! 5.7¢0.1 (.976+.011(30! 31.0¢0.0 |{.882+.024
| 60| 61.0:0.0 |.886+.023 .
[ Y51 18.5%0.3  |.008%.02) |
2.49| 12.3+0.4 |.880+.024(30( 31.0¢0.0 |.894%.023 |
RN el : 60 61.040.0 |.882%.024 |
) 151760.8¢2.0  [.904%.022 J
1.24] 48.3+1.1  |.872+.025/30| 55.0%1.3 |.912¢.020 ;
60| 62.9+0.4  |.902+.022 |
151241.748.1  |.912%.020 |
0.62(204.4+1.8 |.896+.022/30/217.945.1  |.898+.022 i
60/211.5¢3.4  |.912+.020




Table 10. Absolute Width Results for Z(7|all components new) = .778,
Reliability Model.

Chow and Robbins Dudewicz
e |E Na ](c,a)} coverage |n E{Na 2(c,a)} coverage

2 :
15[ 246.0+ 27.2].704+.034 3
.156 | 179.5¢7.0 |.774+.031|30| 220.8+ 17.0(.772+.031 ‘
60| 231.7+ 14.9/.812+.029
151 981.8+109.0] .728+.033
.078 | 888.0+14.5 |.900+.022|30( 880.6+ 68.0|.794+.030 ]
60| 922.2+ 59.6|.838+.027 ]
15[3925.6+435.8| .772+.031
.039 [3672.1+32.9 |.884+.024|30|3520.9+272.0|.788+.030
60)3687.2+238.5| .832+.028

o




Figure 1. d(m|¥(0)=0) as a Function of m for the M/M/1 Queue
with p = 0.9.
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Figure 2. e(m|Iy=s) as a Function of m for the (s,5) Inventory
System.
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Figure 3. Reliability Model.
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